This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

s e STEVEN . CRANG Separation Science and Technology
Publication details, including instructions for authors and subscription information:
SEPARATION SCIENCE

http://www.informaworld.com/smpp/title~content=t713708471

Computer Calculation of Counter-Double-Current-Distribution Curves
— — .. | KentK. Stewart*
* Laboratories of the Rockefeller University New York, New York

To cite this Article Stewart, Kent K.(1968) 'Computer Calculation of Counter-Double-Current-Distribution Curves',
Separation Science and Technology, 3: 5, 479 — 492

To link to this Article: DOI: 10.1080/01496396808052231
URL: http://dx.doi.org/10.1080/01496396808052231

PLEASE SCROLL DOWN FOR ARTICLE

Full terns and conditions of use: http://wwinformworld.coniterns-and-conditions-of-access. pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |loan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or make any representation that the contents
will be conplete or accurate or up to date. The accuracy of any instructions, formul ae and drug doses
shoul d be independently verified with primary sources. The publisher shall not be liable for any |oss,
actions, clainms, proceedings, demand or costs or danmmges whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.



http://www.informaworld.com/smpp/title~content=t713708471
http://dx.doi.org/10.1080/01496396808052231
http://www.informaworld.com/terms-and-conditions-of-access.pdf

14: 42 25 January 2011

Downl oaded At:

SEPARATION SCIENCE, 3(5), pp. 479-492, Oct., 1968

Computer Calculation of
Counter-Double-Current-Distribution Curves®

KENT K. STEWART

LABORATORIES OF THE ROCKEFELLER UNIVERSITY
NEW YORK, NEW YORK

Summary

A practical method is reported for the calculation by digital computer of
counter-double-current-distribution curves of ideal solutes. The method is
applicable for the calculation of batchwise operations of the distribution
train when the solute is loaded in any number of tubes at any position in the
train. Application of the method permits the calculation of the distribution
of solutes in the train and in the efluent fractions. The results of calculations
of the effects of several modes of operation of the counter-double-current-
distribution train are presented. The distribution of a mixture of isoleucine
and valine center-loaded into 38 tubes of a 58-tube train is presented as an
example.

INTRODUCTION

Counter-double-current distribution (CDCD) is a discontinuous
liquid-liquid extraction technique similar to countercurrent dis-
tribution (CCD). In CDCD both phases move but in opposite
directions at each transfer, while in CCD only one phase moves.

The development of a practical device for CDCD (1) provided a
means by which large quantities of materials could be fractionated
by liquid-liquid extraction. Fractionation of 10-g quantities of a
and B chains of hemoglobin (1,2) and of 2-g quantities of 4§ trans-
fer RNA (2) have been achieved by this technique.

The usefulness of CDCD would be increased if a method were

® This investigation was supported in part by a grant (AM 02493) from the National
Institutes of Health.
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available for the calculation of the solute distribution in the train
and in the emerging efluents when more than one tube is toaded
with solute or when the sample is loaded off-center. We have used
a digital computer simulation of the CDCD process to predict the
distribution patterns of ideal solutes® of different partition coeffi-
cients. The effect of some of the common variables of CDCD on
the distribution patterns has been studied, including the effect of
a multiple tube load and an off-center load. The discussion is
limited to batchwise operation of the CDCD machine.

EXPERIMENTAL

Materials

All solvents were distilled before use and all were reagent grade.
The L-valine was obtained from Mann Research Laboratories and
was chromatographically pure. The L-isoleucine was obtained from
the Sigma Chemical Company and it was free of alloisoleucine and
chromatographically pure.

Counter-Double-Current Distribution

The system used was n-butanol/5% hydrochloric acid (50:50
v/v) (3). The amino acids were dissolved in lower phase to give a
concentration of 6 X 107 M for each amino acid. The partition
coefficients, measured by the ninhydrin reaction (4), were 0.810
for isoleucine and 0.366 for valine. The sample was loaded in the
center 38 tubes of a 58-tube CDCD train. The upper phase volume
was 20 ml and the lower phase volume was 10 ml. CDCD was
carried out for 100 transfers. The effluent tubes and the upper and
lower phases of the tubes in the train were then analyzed. The
effluent fractions were concentrated on a rotatory evaporator and
each fraction was analyzed on an amino acid analyzer (5).

THEORY AND CALCULATIONS
Only a brief outline of the theory of CDCD will be presented
here, as the basic theory has been presented by Stene (6). Con-

® An ideal solute is defined as a solute whose distribution coeflicient is inde-
pendent of solute concentration.
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sider the case where the upper phase enters on the left and moves
to the right and the lower phase enters on the right and moves to
the left. The tubes are numbered from left to right. The amount of
solute in any tube r after n transfers is the sum of the material which
is contained in the upper phase of the r — 1 tube at n — 1 transfers
and in the lower phase of the r+ 1 tube at n — 1 transfers. The
amount of material in the upper phase of the r— 1 tube at n — 1
transfers equals [aK/(aK + 1)|(Ty-1,~-1), where a is the ratio of
upper phase volume to lower phase volume, K is the partition co-
efficient, and T,_;,_, is the solute in tube r— 1 at n — 1 transfers.
Similarly, the amount of material in the lower phase of tube r + 1
at n— 1 transfers equals [1/(aK+ 1)](T,-1.r+1). Thus the quantity
of solute in tube r at n transfers is that shown in Eq. (1).

aK 1
Tn,r (IK+ 1 (Tn 1ir— 1) + C!K+ 1 (T ~1, r+1) (1)

Stene (6) showed that when all the solute remained in the train
the process could be described by

n! [aK/(aK + 1)J@+n21[1/ (oK + 1) Jle-rya

Tor = I+ DRI T = P /2!

(2)

and that T, , = 0, if [(n + r)/2] is not an integer.

If the solutes leave the distribution train in either of the efluent
phases, three equations are required to describe the distribution
of the solute in the machine at n transfers. The amount of solute
in the first tube on the right of the train (fresh lower phase intro-
duced) is given by Eq. (3), that in the center tubes by Eq. (1), and
that in the first tube on the left of the train (fresh upper phase
introduced) by Eq. (4).

K
Tor =~z (Ta-ir-1) 3)
1
Tnr =7k 1 (Tn-trs1) (4)

The amount of solute in the upper phase (UPn) emerging from
the train at the nth transfer is given by Eq. (5). The amount of solute
in the lower phase (LPn) emerging at the nth transfer is given by
Eq. (6).
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UPn= _aK _ (T,_1.N) N = total tubes in the machine (5)
aK+1

1
LPn= g7 (Tar1) (6)

Although equations have been derived for the calculation of
the patterns of the emerging solutes, the manual solution of these
equations is time consuming and tedious. The equations of Com-

Read: Number of Transfers, Total Number of Tubes, Ky, K2, Massy/Tube
Massp/Tube, Tubes Loaded, Phase Volumes

F——[ Increment Transfer Number (n) by 1 ]
'

Increment Tube Number {r) by 1

= Massp out

Calculate: 1. EUPn of Mass] and Mass)
2. Tn,r from Equation for compound 1
3. Tn,r from Equation for compound 2

Calculate: Tn,r from Equation for compound 1
Tn,r from Equation for compound 2|

2
Calculate: Tn,r from Equation for compound 1
Tn,r from Equation for compound 2
ELPn of Mass) and Massp

4/‘\ = Mass] out
\NO/ = Mass; out

Compute: % total Mass] out
| % total Massp out
Total mass/each tube
% purity compound 1/each tube

FIG. 1. Flow diagram of the Fortran computer program used to perform

calculations of CDCD curves. A: Print the transfer number, print the per-

cents of solutes 1 and 2 removed from the train, and for each tube in the

train print the total mass, the mass of solute 1, the mass of solute 2, and the

percent purity of solute 1. B: Print for each fraction of each effluent phase

at the prescribed transfer intervals the mass of each solute, the total mass,
and the percent purity of each solute.
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12~ Lower phase effluent In CDCD train Upper phase effluent

Mass

o . X =~ oy
10 30 50 70 90 110 130150 O 20 40 60 150 130110 90 70 50 30 10
Transfer No. Tube No. Transfer No.

FIG. 2. Calculated CDCD curves after 150 transfers of a 2-tube center-loaded

58-tube train. One hundred mass units of each solute were loaded in each

tube. B =20, O—CO (K, = 0.233, K, = 4.47); 3= 3.0, 8—@ K, = 0.557,

K, =172); =12 (K, = 0912, [J; Ky = 1.095, Xx——X); total mass,
D——-A.

pere and Ryland (7) do not permit calculation of the solute con-
centration within the distribution train, and the approach of Hib-
bits (8) does not lend itself to easy calculation of multiple tube
loading or off-center loading.

The calculation of distribution patterns is made by computer
calculation of the amount of solute in each tube at each transfer
by repetitive use of Egs. (1), (3), (4), (5), and (6). The calculations
were made on a Control Data 160G computer using the program
outlined in the block diagram shown in Fig. 1.

RESULTS

The distribution pattern of the solute concentration in the CDCD
train and in the upper and lower phase effluent is a function of the
parameters of Eq. {2) and of the position where the solute is loaded
into the machine. Some calculated CDCD patterns are shown in
Figs. 2 and 3. Several calculated plots of percent removal versus
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71 |}-ks0223

Mass

1 T v
300 400 500
Transfer No.

FIG. 3. Calculated CDCD lower phase effluent curves of a 2-tube center-
loaded 58-tube train. K= 0.223, B——MW; K= 0.408, 0——0; K= 0.577,
A—A; K= 0,745, x—X%; K= 0.912, O—10[.

transfer number are shown in Fig. 4. The curves shown in Fig. 4
are quite similar to those reported by Hibbits (8).

These plots demonstrate the effect of the partition coefficient on
the migration of the solutes in the distribution train. The peak of
the solutes with a partition coefficient of 1 does not move. The
peaks of the solutes with partition coeflicients greater than 1 move
with the upper phase, and peaks of the solutes with partition co-
efficients less than 1 move with the lower phase. As the deviation
of K from 1 becomes greater, the material moves faster and is con-
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centrated in fewer fractions. A marked skewing is observed for
solutes with a partition coeflicient near 1. The distribution pattern
of a material with a partition coefficient 1/Kis a mirror image of
the pattern of a material with a partition coefficient of K (center-
loaded, a = 1).

The ratio® B of the partition coefficients of the solutes in a binary
mixture is a measure of the ease of separation of the two solutes by
liquid-liquid extraction techniques (9). If B =1, there can be no
fractionation of the solutes in the system; and if 8 > 1, some puri-
fication is possible.

CDCD runs were simulated for 8 values of 1 to 100. Two solutes
of equal mass were loaded in the center tubes of a 58-tube CDCD
machine. Partition coeflicients were selected such that aK, - aK,
= 1.000. The simulation of the distribution was continued until
the calculated purity of the effluent solute reached a constant value.

The effect of the B8 value on the purification of the low K solutes
is shown in Table 1 for center loads of 2, 21, and 41 tubes in a

® This B ratio is by definition equal to or greater than 1.

.0, 10!
'oorIO0.0\ 20 00 ., 30 20
eor— .

6o
a0f

20+

-
-

L T T L L T ) L) L] 1
200 250 300 350 400 450 500
Transfer No.

1
0 50 100 150

FIG. 4. Calculated plots of percent removal versus transfer number for a

2-tube center-loaded 58-tube train. The partition coefficients are selected

so that ek, - aK,=1.000. =100, @——@; =20, 0——C; =10, A——A;

B=6 A——NA; =3, B—B; 8=2 0O——0;8=16 x—X; =12,
>—>— g=1.0, V——V——,
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TABLE 1
Calculated Percent Purity of Low K Solute in Lower Phase Effluent*
B
value
No. of tubes
center-loaded 1.1 1.2 14 1.6 1.8 2.0 3.0 >3.0
2 80 93.4 993 999 99.98 99.99 100.0 100.0
21 - 92 99 99.8 99.9 99.98 100.0 100.0
41 - - — — — 99.6 100.0  100.0

% An equal mass mixture of the given B value was center-loaded into the appro-
priate number of tubes in a CDCD train and then distributed until 99% of each
solute had left the train. The percent Yurity is calculated as that of the total solute
emerging in the lower phase. Identical values were found for the percent purity of
the high K solute in the upper phase effluent.

58-tube machine. The results of a detailed study of the effect of
the number of tubes initially loaded on percent purity are shown
in Fig. 5. Since the system is symmetrical, the purity of the high
K material is the same as that of the low K material.

Thus when solutes are distributed under the conditions given

95
93}
9| -

89

Per cent purity

871

85

i 1 1 ] 1 i
100 200 300 400 500 600
Transfer No.

FIG. 5. Calculated CDCD effluent purity curves of a center-loaded binary
mixture of 8= 1.2 (K, = 0.912, K, = 1.095). The percent purity is that cal-
culated for the single fraction collected at that transfer, Two-tube load,
A—A,; 5-tube load, @—@; 11-tube load, O—QO; 21-tube load, B—W.
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in Table 1, a significant portion of the tubes in the train may be
loaded with solute with little effect on the final purity of the ma-
terial. Especially striking is the 99+% purity of the purified mate-
rials when a binary mixture with an overallKof 1 anda B = 2 is
center-loaded into 70% of the tubes of the train.

The concentration of the purified material is much higher when
multiple tube loading has been used. For example, the effluent
solute from a 21-tube load is 10 times as concentrated as that from a
2-tube load. The higher concentrations of purified material will
generally simplify its isolation.

The efficiency of the separation for solutes with given values of
B is dependent upon the effective distribution coeflicient of the
solute mixture. This can be illustrated by examination of Fig. 3.
Note the patterns of the solutes of K= 0.223 and K = 0.408. The B
value for these two solutes is about 1.8 and the K of the mixture
equals 0.335. If all the solute of K= 0.223 were collected, it would
have a 59% purity; and if all the solute of K = 0.408 were collected,
it would have a 50% purity. Selective cuts to improve the purity
would require the sacrifice of solute. When the total overall solute
K =1 and a= 1.8, the purity of each solute is 99% (Table 1).

The degree of fractionation attainable by CDCD is a direct
function of the number of transfers the mixture undergoes. Loading
off-center and/or increasing the number of tubes in the CDCD
train are useful methods of increasing the number of transfers in
which the mixture participates prior to emerging in the effluent.
Figure 6 shows that offsetting the initial load of material from the
center of the train increases the percent purity of one of the purified
materials with a concurrent decrease in yield. Examination of Fig. 7
shows that increasing the number of tubes in the train results in
increased fractionation and a simultaneous decrease in concen-
traction of the purified material.

It might appear that the combination of CCD and CDCD would
be a powerful method of fractionation. The mixture would be sub-
jected to the fundamental CCD process, and then the distributed
material would be directly subjected to CDCD. Since the distri-
bution train available in our laboratory has this potential, several
simulations of this type of operation were made.

A comparison of the CDCD simulation and initial CCD followed
by CDCD is shown in Fig. 8. These plots and the results of a
number of other simulations of the combination of CCD and



14: 42 25 January 2011

Downl oaded At:

488 K. K. STEWART
Low K —— High K =----=

100 100+

80F 80
e a -
2> 2
‘T 60 8 GOF
a el
e B < ~
3 8
. 40} a0 |
m |
o &

20 20

I W — J W —
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FIG. 6. Calculated percent purities and percent recoveries as a function of
loading position. The results shown are from simulated distributions of a
50:50 mixture of two solutes with 8= 1.2 (K, = 0.912, K, = 1.095) loaded
at the designated position in a 27-tube CDCD train. The values given are
those values observed when 99% of the solutes have left the train. The
percent purity values and the percent recovery values are those found in
the lower phase efluent for the solute of K = 0.912 and in the upper phase
for the solute of K= 1.095. Low K material, @——@; high K material,
-9

CDCD do not give any indication that the combination of CCD
and CDCD is significantly superior to CDCD.

The results of the counter-double-current distribution of the mix-
ture of isoleucine and valine are shown in Fig. 9. The discrepancy
between the calculated and observed curves of the effluents is
probably due to imperfect volume transfer and small errors in the
measurements of the partition coefficient. A series of calculations
have demonstrated that the concentration in the effluent phases
can be quite sensitive to these variations. The small deviations in
the calculated and observed purities of the amino acids isolated
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FIG. 7. Effect of train length on the percent purity (@——@®) and maximum
concentration (@--- @) of a 2-tube center-loaded solute mixture of 8 = 1.2.

=e

i

K=9.99

STy

Transfer No

FIG. 8. Comparison of effluent curves from CDCD and from a combination

of CCD and CDCD. One hundred mass units of each of four components

with partition coefficients of 0.10, 0.223, 4.49, and 9.99 were loaded in each

tube. (A) CDCD, 2 tubes center-loaded; (B) lower phase efluent, 2 tubes

loaded at front of machine, 50 transfers by CCD followed by CDCD; (C)
upper phase, other conditions identical to B.
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Per cent purity

Calc. Found
Valine 99.87 | 99.46
Isoleucine | 99.48 | 99.58

O.D.

0.4 Lower phase in train Upper phase
03

0.2 ,,a'“-“

0.1 AAAAAMAAAA

na
s ) =20 B0,
qasay : I I ;"l"_ T T T r——r——r—r-jgrnﬂ“ﬁ
0

0 20 40 60 80 10 20 30 40 50 10080 60 40 20 ©
Transfer No. Tube No. Transfer No.

FIG. 9. CDCD of a 38-tube load of an equal molar mixture of isoleucine and

valine after 100 transfers. Calculated: lower phase, solid line; upper phase,

dashed line. Experimental: upper phase, 0; lower phase, A. See experi-
mental section for details.

from the effluent fractions are also probably due to the above-
mentioned factors.

DISCUSSION

The results presented here as well as the calculations of Hibbits
(8) and experiments of Craig and co-workers (1,9) indicate that
CDCD can be a powerful means of fractionation. If both compo-
nents of a binary solute mixture are desired in the highest purity,
the effective overall K should equal 1, the 8 value should be as
large as possible, and the material should be center-loaded. The
simulation techniques used here permit the calculation of CDCD
curves when multiple tube loading and/or off-center loading is
used. Multiple tube loading can greatly increase the capacity of
the train with little loss in the purity of the products. The capacity
of the system is demonstrated by an emerging solute of greater
than 99% purity (8 = 2.0) from loading 41 out of 58 tubes (see Table
1). If we assume a load of 50 mg/cc in lower phase and a train with
a 25-ml lower phase capacity per tube, then 51 g of a binary mix-
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ture can be loaded in 41 tubes. A less obvious advantage of multiple
tube loading (i.e., single-time bulk loading) over a continuous feed
operation is that the concentration of ideal solutes does not increase
in a multiple-tube-loading situation, whereas the solute concen-
trations do increase in a continuous-feed operation (6,9,10). Al-
though this increase of solute concentration can be useful in con-
centrating minor components of mixtures, the partition coeflicients
of the solute are likely to become concentration dependent at the
high concentrations of solute (9).

The lack of a good method for determining a running partition
coefficient for a solute in CDCD operations presents a problem in
the exact calculation of the CDCD curve. Partition coeflicients
vary slightly from distribution to distribution as a result of the ac-
cumulated small variations in the runs. Thus the assessment of
purity by comparing the experimental and calculated curves is not
as rigorous as that in CCD, particularly since the resolution of two
solutes of similar partition coeflicients both less than or both greater
than 1 is not as great in CDCD as in CCD.

Purity checks can be made by measuring the distribution coeffi-
cients across the peaks as done in CCD (9). Purity checks may be
made on the effluent material if each fraction of the efluent has
some of the alternate phase added to it before the determination
of the partition coefficient.

Sometimes it is not practicable to compute the CDCD curves.
When only two or three tubes are center-loaded and the partition
coeflicients are known, Craig’s method (I) of doubling the normal
curve of error and normalizing to the tube of maximum concen-
tration gives a curve which appears to be identical to the computer-
caleulated curve if less than 20% of the solute has left the distri-
bution train.

The computer simulation technique described in this article
provides a means for the calculation of CDCD curves only for ideal
systems. An ideal CDCD system is defined as one in which (1)
the partition coeflicients are independent of concentration and/or
of the presence of other solutes in the mixture, (2) the volume and
composition of the solvent of each phase at each transfer is in-
varient, (3) equilibrium has been reached in each tube at each
transfer, and (4) no chemical modification of the solutes or solvent
has occurred during the distribution.

Several workers have proposed techniques for the calculation of
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CCD curves which take into account variables 1 and 2 (11-13).
These techniques should be equally applicable to CDCD.

The calculation of CDCD curves of solutes with concentration-
dependent partition coefficients should be possible by including
the approach of Williams and Craig (12) with the program described
in this article. The effect of variation in phase volume and phase
composition on the CDCD curves could be calculated by com-
bining the approach of Eddy and Showell (11) with the approach
of Rothbart and co-workers (13) and inserting these into the CDCD
program. A program combining all these approaches should provide
a means for the calculation of CDCD curves of nonideal solutes in
nonideal solvents with nonideal transfer patterns.
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